Controlling the Movement of Water Through Nanotube Membranes

Last June I posted in Computer Power in 5-10 Years — that computers 1000 times faster than todays computers will be available in 5-10 years. This week Intel unveiled the first Teraflop chip. It won’t be available for 5 years or more. First teraflop speeds were achieved at Sandia Labs 10 years ago using building sized computers. Remember this stuff speeds up the rate at which things happen. Its in part the accelerating speed of the computers that give men like Mihail Roco, senior advisor for the nanotechnology to the National Science Foundation and a key architect of the National Nanotechnology Initiative…such confidence about the accelerating pace of developments in nano technology.

What about those developments?

I mentioned charge in passing during the post on the work of LLNL researchers last year. This week there were two different groups that created membranes using charge and a third that made a supercondenser made of nanotubes.The first is from the University of Rochester. Their post will appear in Nature. They have created a membrane that’s 50 atoms thick. Its NOT a carbon nanotube but I think the work is interesting because it suggests that the charge properties of the carbon nanotubes are not a function of the shape of the nanotubes–and maybe not even the size of the nanotubes. Read this second piece to see how scientists at MIT charge carbon nanotubes used to create the next generation batteries that charge up instantly. The third piece is the most interesting. A group at Rensselaer Polytechnic Institute announced that they had found a way to precisely control the flow of water through carbon nanotubes by adjusting the carbon nanotube membrane charge. How did they create the membranes? They may have used a printing method developed by another Rensselaer Polytechnic Institute team–or another by method developed by a Northwestern Team. But I can’t be sure. Anyhow, here’s the post. (see me comment after the post.)

bV = parseInt(navigator.appVersion); if (bV >= 4) window.print();

Controlling the Movement of Water Through Nanotube Membranes

Precise control of water transport through a nanotube membrane is demonstrated by a novel electro-chemical approach. Credit: Rensselaer Polytechnic Institute

Precise control of water transport through a nanotube membrane is demonstrated by a novel electro-chemical approach. Credit: Rensselaer Polytechnic Institute

By fusing wet and dry nanotechnologies, researchers at Rensselaer Polytechnic Institute have found a way to control the flow of water through carbon nanotube membranes with an unprecedented level of precision.

The research, which will be described in the March 14, 2007 issue of the journal Nano Letters, could inspire technologies designed to transform salt water into pure drinking water almost instantly, or to immediately separate a specific strand of DNA from the biological jumble.

Nanotube membranes have fascinated researchers with their combination of high flow rates and high selectivity, allowing them to filter out very small impurities and other organic materials like DNA and proteins from materials with high water content. The problem is that nanotube arrays are hydrophobic, strongly repelling water.

“We have, at a very fundamental level, discovered that there is a new mechanism to control water transport,” said Nikhil Koratkar, associate professor of mechanical engineering at Rensselaer and lead author of the paper. “This is the first time that electrochemical means can be used to control the way that the water interacts with the surface of the nanotube.”

A group of Rensselaer researchers led by Koratkar has found a way to use low-voltage electricity to manipulate the flow of water through nanotubes. Control of water’s movement through a nanotube with this level of precision has never been demonstrated before.

“In this century one of the big challenges is how to get clean drinking water,” Koratkar said. “If you can remove salt from water you can solve this problem. Nature does this all the time. The first step to getting to this process is to control the flow of water through nanochannels, which we have now successfully demonstrated. This is the starting part of the research. The next step would be to capture specific proteins, DNA, or impurities within the water with specifically designed nanotubes.”

The researchers discovered that when the nanotube’s membrane is given a small positive potential of only 1.7 volts, and the water is given a negative potential, the nanotubes quickly switch from repelling water to pumping water through the tube. When the charge on the water is raised, the water flows through at an exponentially faster rate. When the experiment is reversed with a negatively charged nanotube, it takes much higher voltage (90 volts) to move the water through the tube.

By simply reversing the polarity of the nanotubes, the team found that they could actually start and stop the flow of water through the tube. When a small positive charge is administered the water moves through the tube, and when that charge is reversed the water flow stops.

The researchers determined that the nanotube walls had been electrochemically oxidized as a result of water electrolysis, meaning that oxygen atoms had coated the surface of the nanotubes enabling the movement of water through the tube. Once the charge is reversed, oxidation stops and the water can no longer flow through the unoxidized portion of the tube.

The researchers also discovered that they could control the rate of water flow through nanotubes sitting directly next to each other, allowing one tube to pump quickly while the one next to it didn’t pump water at all. Such an extreme difference in water absorption so close together is unprecedented, and could have major implications for time-released drug coatings, lab-on-a-chip devices, and water capture that mimics some of nature’s most efficient water-harvesting materials.

The research is the first step to creating nanotube devices built to filter out specific elements from water and organic materials. With this enabling research in place, more efficient micro-filtration and separation techniques can be created for environmental restoration, the production of safe drinking water, biomedical research, and advanced circuitry.

Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and a world-renowned expert in fabricating nanotube materials, collaborated with Koratkar on this project. Four other Rensselaer researchers were involved with the research: Saroj Nayak, associate professor of physics; post-doctoral researcher Lijie Ci; and doctoral students Li Chen and Zuankai Wang.

Source: Rensselaer Polytechnic Institute

This news is brought to you by PhysOrg.com

friends…just for giggles,… show them this piece on programmable water. And then mention the work above.

Advertisements
Explore posts in the same categories: Water Desalination Research and Development

One Comment on “Controlling the Movement of Water Through Nanotube Membranes”


  1. […] charge the filler material. Or put imperfections in the carbon nanotubes to increase their charge. In this blog i mention that charge might be related to something else. Might be good work for simulations. As […]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: